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Abstract. Previous analyses of pattern search algorithms for unconstrained and linearly con-
strained minimization have focused on proving convergence of a subsequence of iterates to a limit
point satisfying either directional or first-order necessary conditions for optimality, depending on
the smoothness of the objective function in a neighborhood of the limit point. Even though pat-
tern search methods require no derivative information, we are able to prove some limited directional
second-order results. Although not as strong as classical second-order necessary conditions, these
results are stronger than the first order conditions that many gradient-based methods satisfy. Under
fairly mild conditions, we can eliminate from consideration all strict local maximizers and an entire
class of saddle points.
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1. Introduction. In this paper, we consider the class of generalized pattern
search (GPS) algorithms applied to the linearly constrained optimization problem,

min
x∈X

f(x), (1.1)

where the function f : Rn → R ∪ {∞}, and X ⊆ Rn is defined by a finite set of
linear inequalities i.e., X = {x ∈ Rn : Ax ≥ b}, where A ∈ Rm×n and b ∈ Rm.
We treat the unconstrained, bound constrained, and linearly constrained problems
together because in these cases, we apply the algorithm, not to f , but to the “barrier”
objective function fX = f + ψX , where ψX is the indicator function for X; i.e., it is
zero on X, and infinity elsewhere. If a point x is not in X, then we set fX(x) = ∞,
and f is not evaluated. This is important in many practical engineering problems in
which f is expensive to evaluate.

The class of derivative-free pattern search algorithms was originally defined and
analyzed by Torczon [27] for unconstrained optimization problems with a continuously
differentiable objective function f . Torczon’s key result is the proof that there exists
a subsequence of iterates that converges to a point x∗ which satisfies the first-order
necessary condition, ∇f(x∗) = 0. Lewis and Torczon [20] add the valuable connection
between pattern search methods and positive basis theory [16] (the details of which are
ingrained into the description of the algorithm in Section 2). They extend the class to
solve problems with bound constraints [21] and problems with a finite number of linear
constraints [22], showing that if f is continuously differentiable, then a subsequence
of iterates converges to a point satisfying the Karush-Kuhn-Tucker (KKT) first-order
necessary conditions for optimality.

Audet and Dennis [7] add a hierarchy of convergence results for unconstrained
and linearly constrained problems whose strength depends on the local smoothness of
the objective function. They apply principles of the Clarke [12] nonsmooth calculus
to show convergence to a point having nonnegative generalized directional derivatives
in a set of directions that positively span the tangent cone there. They show conver-
gence to a first-order stationary (or KKT) point under the weaker hypothesis of strict
differentiability at the limit point, and illustrate how results of [21], [22], and [27] are
corollaries of their own work.
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Audet and Dennis also extend GPS to categorical variables [6], which are discrete
variables that cannot be treated by branch and bound techniques. This approach is
successfully applied to engineering design problems in [2] and [19]. The theoretical
results here can certainly be applied to these mixed variable problems, with the caveat
that results would be with respect to the continuous variables (i.e., while holding
the categorical variables fixed). An adaptation of the results in [6] to more general
objective functions using the Clarke [12] calculus can be found in [1].

The purpose of this paper is to provide insight into the second order behavior of
the class of GPS algorithms for unconstrained and linearly constrained optimization.
This may seem somewhat counterintuitive, in that, except for the approach described
in [3], GPS methods do not even use first derivative information. However, the nature
of GPS in evaluating the objective in multiple directions does, in fact, lend itself to
some limited discovery of second order theorems, which are generally stronger than
what can be proved for many gradient-based methods. Specifically, while we cannot
ensure positive semi-definiteness of the Hessian matrix in all directions (and in fact,
we show a few counter-examples), we can establish this result with respect to a certain
subset of the directions, so that the likelihood of convergence to a point that is not a
local minimizer is reasonably small.

This paper does not address the question of second order behavior of GPS algo-
rithms for general nonlinear constraints. Extending convergence results of basic GPS
to problems with nonlinear constraints requires augmentation to handle these con-
straints. Lewis and Torczon [23] do this by approximately solving a series of bound
constrained augmented Lagrangian subproblems [14], while Audet and Dennis [9] use
a filter-based approach [17]. The results presented here may be extendable to the for-
mer but not the latter, since the filter approach given in [9] cannot be guaranteed to
converge to a first-order KKT point. The direct search algorithm of Lucidi et al. [24]
applies positive basis theory to handle nonlinear constraints in a way similar to GPS,
but it requires constraint derivatives and satisfaction of a sufficient decrease condi-
tion to ensure convergence, which [23] and [9] do not. Because of dissatisfaction with
these limitations, Audet and Dennis [8] recently introduced the class of mesh-adaptive
direct search (MADS) algorithms, a generalization of GPS that achieves first-order
convergence for nonlinear constrained problems by generating a set of feasible direc-
tions that, in the limit, becomes asymptotically dense in the tangent cone. We plan
to study second-order convergence properties of MADS in future work.

The remainder of this paper is organized as follows. In the next section, we
briefly describe the basic GPS algorithm, followed by a review of known convergence
results for basic GPS algorithms in Section 3. In Section 4, we show that, while
convergence to a local maximizer is possible, it can only happen under some very
strong assumptions on the both the objective function and the set of directions used
by the algorithm. In Section 5, we introduce additional theorems to describe second
order behavior of GPS more generally, along with a few examples to illustrate the
theory and show that certain hypotheses cannot be relaxed. Section 6 offers some
concluding remarks.

Notation. R, Q, Z, and N denote the set of real numbers, rational numbers,
integers, and nonnegative integers, respectively. For any set S, |S| denotes the car-
dinality of S, and −S is the set defined by −S = {−s : s ∈ S}. For any finite set
A, we may also refer to the matrix A as the one whose columns are the elements of
A. Similarly, for any matrix A, the notation a ∈ A means that a is a column of A.
For x ∈ X, the tangent cone to X at x is TX(x) = cl{µ(w − x) : µ ≥ 0, w ∈ X},
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and the normal cone NX(x) to X at x is the polar of the tangent cone; namely,
NX(x) = {v ∈ Rn : vTw ≤ 0 ∀ w ∈ TX(x)}. It is the nonnegative span of all
outwardly pointing constraint normals at x.

2. Generalized Pattern Search Algorithms. For unconstrained and linearly
constrained optimization problems, the basic GPS algorithm generates a sequence of
iterates having nonincreasing function values. Each iteration consists of two main
steps, an optional search phase and a local poll phase, in which the barrier objective
function fX is evaluated at a finite number of points that lie on a mesh, with the goal
of finding a point with lower objective function value, which is called an improved
mesh point.

The mesh is not explicitly constructed; rather, it is conceptual. It is defined
primarily through a set of positive spanning directions D in Rn; i.e., where every
vector in Rn may be represented as a nonnegative linear combination of the elements
of D. For convenience, we also view D as a real n × nD matrix whose nD columns
are its elements. The only other restriction on D is that it must be formed as the
product

D = GZ, (2.1)

where G ∈ Rn×n is a nonsingular real generating matrix, and Z ∈ Zn×nD is an
integer matrix of full rank. In this way, each direction dj ∈ D may be represented as
dj = Gzj , where zj ∈ Zn is an integer vector. At iteration k, the mesh is defined by
the set

Mk =
⋃

x∈Sk

{x+ ∆kDz : z ∈ NnD}, (2.2)

where Sk ∈ Rn is the set of points where the objective function f had been evaluated
by the start of iteration k, and ∆k > 0 is the mesh size parameter that controls
the fineness of the mesh. This construction is the same as that of [8] and [9], which
generalizes the one given in [7]. It ensures that all previously computed iterates will
lie on the current mesh.

The search step is simply an evaluation of a finite number of mesh points. It
retains complete flexibility in choosing the mesh points, with the only caveat being
that the points must be finite in number (including none). This could include a few
iterations using a heuristic, such as a genetic algorithm, random sampling, etc., or, as
is popular among many in industry (see [5, 10, 11, 25]), the approximate optimization
on the mesh of a less expensive surrogate function. A related algorithm that does not
require the surrogate solution to lie on the mesh (but requires additional assumptions
for convergence) is found in [15].

If the search step fails to generate an improved mesh point, the poll step is
performed. This step is much more rigid in its construction, but this is necessary
in order to prove convergence. The poll step consists of evaluating fX at points
neighboring the current iterate xk on the mesh. This set of points Pk is called the
poll set and is defined by

Pk = {xk + ∆kd : d ∈ Dk ⊆ D} ⊂Mk, (2.3)

where Dk is a positive spanning set of directions taken from D. We write Dk ⊂ D to
mean that the columns of Dk are taken from the columns of D. Choosing a subset
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Dk ⊂ D of positive spanning directions at each iteration also adds the flexibility that
will allow us to handle linear constraints in an efficient fashion.

If either the search or poll step is successful in finding an improved mesh point,
then the iteration ends immediately, with that point becoming the new iterate xk+1.
In this case, the mesh size parameter is either retained or increased (i.e., the mesh is
coarsened). If neither step finds an improved mesh point, then the point xk is said to
be a mesh local optimizer and is retained as the new iterate xk+1 = xk, and the mesh
size parameter is reduced (i.e., the mesh is refined).

The rules that govern mesh coarsening and refining are as follows. For a fixed
rational number τ > 1 and two fixed integers w− ≤ −1 and w+ ≥ 0, the mesh size is
updated according to the rule,

∆k+1 = τwk∆k, (2.4)

where wk ∈ {0, 1, . . . , w+} if the mesh is coarsened, or wk ∈ {w−, w− + 1, . . . ,−1} if
the mesh is refined.

From (2.4), it follows that, for any k ≥ 0, there exists an integer rk such that

∆k+1 = τ rk∆0. (2.5)

The basic GPS algorithm is given in Figure 2.1.

Generalized Pattern Search (GPS) Algorithm

Initialization: Let S0 be a set of initial points, and let x0 ∈ S0 satisfy fX(x0) <∞
and fX(x0) ≤ fX(y) for all y ∈ S0. Let ∆0 > 0, and let D be a finite set of
nD positive spanning directions. Define M0 ⊂ X according to (2.2).

For k = 0, 1, 2, . . . , perform the following:
1. search step: Optionally employ some finite strategy seeking an improved

mesh point; i.e., xk+1 ∈Mk satisfying fX(xk+1) < fX(xk).
2. poll step: If the search step was unsuccessful or not performed, evaluate
fX at points in the poll set Pk (see (2.3)) until an improved mesh point
xk+1 is found, or until all points in Pk have been evaluated.

3. Update: If search or poll finds an improved mesh point,
Update xk+1, and set ∆k+1 ≥ ∆k according to (2.4);
Otherwise, set xk+1 = xk, and set ∆k+1 < ∆k according to (2.4).

Fig. 2.1. Basic GPS Algorithm

With the addition of linear constraints, in order to retain first-order convergence
properties, the set of directions Dk must be chosen to conform to the geometry of the
constraints. The following definition, found in [7] (as an abstraction of the ideas and
approach of [22]), gives a precise description for what is needed for convergence.

Definition 2.1. A rule for selecting the positive spanning sets Dk = D(k, xk) ⊆
D conforms to X for some ε > 0, if at each iteration k and for every boundary point
y ∈ X satisfying ‖y − xk‖ < ε, the tangent cone TX(y) is generated by nonnegative
linear combinations of the columns of Dk.

Using standard linear algebra tools, Lewis and Torczon [22] provide a clever algo-
rithm to actually construct the sets Dk. If these sets are chosen so that they conform
to X, all iterates lie in a compact set, and f is sufficiently smooth, then a subsequence
of GPS iterates converges to a first-order stationary point [7, 22].
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3. Existing Convergence Results. Before presenting new results, it is impor-
tant to state what is currently known about the convergence properties of GPS for
linearly constrained problems.

We first make the following assumptions:

A1: All iterates {xk} produced by the GPS algorithm lie in a compact set.
A2: The set of directions D = GZ, as defined in (2.1), includes tangent cone
generators for every point in X.
A3: The rule for selecting positive spanning sets Dk conforms to X for some ε > 0.

Assumption A1, which is already sufficient to guarantee the existence of con-
vergent subsequences of the iteration sequence, is a standard assumption [6, 7, 9,
14, 15, 17, 21, 22, 27]. A sufficient condition for this to hold is that the level set
L(x0) = {x ∈ X : f(x) ≤ f(x0)} is compact. We can assume that L(x0) is bounded,
but not closed, since we allow f to be discontinuous and extended valued. Thus we
can assume that the closure of L(x0) is compact. We should also note that most real
engineering optimization problems have simple bounds on the design variables, which
is enough to ensure that Assumption A1 is satisfied, since iterates lying outside of
X are not evaluated by GPS. In the unconstrained case, note that Assumptions A2
and A3 are automatically satisfied by any positive spanning set constructed from the
product in (2.1).

Assumption A2 is automatically satisfied if G = I and the constraint matrix A
is rational, as is the case in [22]. Note that the finite number of linear constraints
ensures that the set of tangent cone generators for all points in X is finite, which
ensures that the finiteness of D is not violated.

If f is lower semi-continuous at any GPS limit point x̄, then f(x̄) ≤ limk f(xk),
with equality if f is continuous [7]. Of particular interest are limit points of certain
subsequences (indexed by some index set K) for which limk∈K ∆k = 0. We know that
at least one such subsequence exists because of Torczon’s [27] key result, restated here
for convenience.

Theorem 3.1. The mesh size parameters satisfy lim inf
k→+∞

∆k = 0.

From this result, we are interested in subsequences of iterates that converge to a
limit point associated with ∆k converging to zero. The following definitions are due
to Audet and Dennis [7].

Definition 3.2. A subsequence of GPS mesh local optimizers {xk}k∈K (for
some subset of indices K) is said to be a refining subsequence if {∆k}k∈K converges
to zero.

Definition 3.3. Let x̂ be a limit point of a refining subsequence {xk}k∈K . A
direction d ∈ D is said to be a refining direction of x̂ if xk + ∆kd ∈ X and f(xk) ≤
f(xk + ∆kd) for infinitely many k ∈ K.

Audet and Dennis [6] prove the existence of at least one convergent refining sub-
sequence. An important point is that, since a refining direction d is one in which
xk + ∆kd ∈ X infinitely often in the subsequence, it must be a feasible direction at
the x̂, and thus lies in the tangent cone TX(x̂).

The key results of Audet and Dennis are now given. The first shows directional
optimality conditions under the assumption of Lipschitz continuity, and is obtained by
a very short and elegant proof (see [7]) using Clarke’s [12] definition of the generalized
directional derivative. Audet [4] provides an example to show that Lipschitz conti-
nuity (and even differentiability) is not sufficient to ensure convergence to a Clarke
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stationary point (i.e., where zero belongs to the Clarke generalized gradient). The
second result, along with its corollary for unconstrained problems, shows convergence
to a point satisfying first-order necessary conditions for optimality. The latter two
results were originally proved by Torczon [27] and Lewis and Torczon [21, 22] under
the assumption of continuous differentiability of f on the level set containing all of
the iterates. Audet and Dennis [7] prove the same results, stated here, requiring only
strict differentiability at the limit point.

Theorem 3.4. Let x̂ be a limit of a refining subsequence, and let d ∈ D be any
refining direction of x̂. Under Assumptions A1–A3, if f is Lipschitz continuous near
x̂, then the generalized directional derivative of f at x̂ in the direction d is nonnegative,
i.e., f◦(x̂; d) ≥ 0.

Theorem 3.5. Under Assumptions A1–A3, if f is strictly differentiable at a
limit point x̂ of a refining subsequence, then ∇f(x̂)Tw ≥ 0 for all w ∈ TX(x̂), and
−∇f(x̂) ∈ NX(x̂). Thus, x̂ satisfies the KKT first-order necessary conditions for
optimality.

Corollary 3.6. Under Assumption A1, if f is strictly differentiable at a limit
point x̂ of a refining subsequence, and if X = Rn or x̂ ∈ int(X), then ∇f(x̂) = 0.

Although GPS is a derivative-free method, its strong dependence on the set of
mesh directions presents some advantages in terms of convergence results. For exam-
ple, if f is only Lipschitz continuous at certain limit points x∗, Theorem 3.4 provides a
measure of directional optimality there in terms of the Clarke generalized directional
derivatives being nonnegative [7]. In the next two sections, we attempt to prove cer-
tain second order optimality conditions, given sufficient smoothness of the objective
function f . Our goal is to quantify our belief that convergence of GPS to a point that
is not a local minimizer is very rare.

4. GPS and Local Maximizers. We treat the possibility of convergence to
a local maximizer separate from other stationary points because what we can prove
requires far less stringent assumptions. We begin with an example, provided by
Charles Audet, to show that it is indeed possible to converge to a maximizer, even
when f is smooth.

Example 4.1. Let f : R2 → R be the continuously differentiable function defined
by

f(x, y) = −x2y2.

Choose (x0, y0) = (0, 0) as the initial point, and set D = [e1, e2,−e1,−e2], where e1
and e2 are the standard coordinate directions. Now observe that, if the search phase
is empty, then the iteration sequence begins at the global maximizer (0, 0), but can
never move off of that point because the directions in D are lines of constant function
value. Thus the sequence xk converges to the global maximizer (0, 0).

Example 4.1 is clearly pathological. Had we started at any other point or polled
in any other direction (that is not a scalar multiple of a coordinate direction), the
algorithm would not have stalled at the maximizer (0, 0). However, it is clear that
the method of steepest descent and even Newton’s method would also fail to move
away from this point.

From this example, one can envision other cases (also pathological), in which
convergence to a local maximizer is possible, but without starting there. However, we
can actually characterize these rare situations, in which convergence to a maximizer
can occur. Lemma 4.2 shows that convergence would be achieved after only a finite
number of iterations. Under a slightly stronger assumption, Theorem 4.3 ensures
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that convergence to a maximizer means that every refining direction is a direction
of constant function value. This very restrictive condition is consistent with Exam-
ple 4.1. Corollary 4.4 establishes the key result that, under appropriate conditions,
convergence to a strict local maximizer cannot occur. This result does not hold for
gradient-based methods, even when applied to smooth functions.

Lemma 4.2. Let x̂ be the limit of a refining subsequence. If f is lower semi-
continuous at x̂, and if x̂ is a local maximizer of f in X, then xk = x̂ is achieved in
a finite number of iterations.

Proof. Since x̂ = lim
k∈K

xk is a local maximizer for f in X, there exists an open

ball B(x̂, ε) of radius ε, centered at x̂, for some ε > 0, such that f(x̂) ≥ f(y) for all
y ∈ B(x̂, ε) ∩ X. Then for all sufficiently large k ∈ K, xk ∈ B(x̂, ε) ∩ X, and thus
f(x̂) ≥ f(xk). But since GPS generates a nonincreasing sequence of function values,
and since f is lower semi-continuous at x̂, it follows that

f(xk) ≤ f(x̂) ≤ f(xk+1) ≤ f(xk), (4.1)

and thus f(xk) = f(x̂), for all sufficiently large k ∈ K. But since GPS iterates satisfy
xk+1 6= xk only when f(xk+1) < f(xk), it follows that xk = x̂ for all sufficiently large
k.

Theorem 4.3. Let x̂ be the limit of a refining subsequence. If f is lower semi-
continuous in a neighborhood of x̂, and if x̂ is a local maximizer of f in X, then every
refining direction is a direction of constant function value.

Proof. Let d ∈ D(x̂) be a refining direction. Since x̂ is a local maximizer, there
exists δ̂ > 0 such that x̂+ td ∈ X and f(x̂) ≥ f(x̂+ td) for all t ∈ (0, δ̂). Now suppose
that there exists δ ∈ (0, δ̂) such that f is continuous in B(x̂, δ) and f(x̂) > f(x̂+ td)
for all t ∈ (0, δ). Then f(x̂) > f(x̂ + ∆kd) for ∆k ∈ (0, δ). But since Lemma 4.2
ensures convergence of GPS in a finite number of steps, we have the contradiction,
f(x̂) = f(xk) ≤ f(xk +∆kd) = f(x̂+∆kd) for all sufficiently large k. Therefore there
must exist δ > 0 such that f(x̂) = f(x̂+ td) for all t ∈ (0, δ).

Corollary 4.4. The GPS algorithm cannot converge to any strict local maxi-
mizer of f at which f is lower semi-continuous.

Proof. If x̂ is a strict local maximizer of f in X, then the first inequality of (4.1)
is strict, yielding the contradiction, f(xk) < f(x̂) ≤ f(xk).

The assumption that f is lower semi-continuous at x̂ is necessary for all three of
these results to hold. As an example, consider the function f(x) = 1 if x = 0, and
x2 otherwise. This function has a strict local maximum at 0, and there are clearly
no directions of constant function value. It is easy to see that any sequence of GPS
iterates will converge to zero, and by choosing an appropriate starting point and mesh
size, we can prevent convergence in a finite number of iterations. The theory is not
violated because f is not lower semi-continuous there.

The additional assumption in Theorem 4.3 of lower semi-continuity in a neigh-
borhood of the limit point (not just at the limit point) is needed to avoid other
pathological examples, such as the function f(x) = 0 if x ∈ Q and −x2 if x /∈ Q.
Continuity of f only holds at the local maximizer 0, and there are no directions of
constant function value. A typical instance of GPS that uses rational arithmetic would
stall at the starting point of 0.

5. Second Order Theorems. An interesting observation about Example 4.1 is
that, even though (0, 0) is a local (and global) maximizer, the Hessian matrix is equal
to the zero matrix there, meaning that it is actually positive semidefinite. This may
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seem counterintuitive, but it is simply a case where the curvature of the function is
described by Taylor series terms of higher than second order.

Thus an important question not yet answered is whether GPS can converge to
a stationary point at which the Hessian is not positive semidefinite (given that the
objective is twice continuously differentiable near the stationary point). The following
simple example demonstrates that it is indeed possible, but once again, the algorithm
does not move off of the starting point.

Example 5.1. Let f : R2 → R be the continuously differentiable function defined
by

f(x, y) = xy.

Choose (x0, y0) = (0, 0) as the initial point, and set D = [e1, e2,−e1,−e2], where e1
and e2 are the standard coordinate directions. Now observe that, if the search step
is empty, then the iteration sequence begins at the saddle point (0, 0), but can never
move off of that point because the directions in D are lines of constant function value.
Thus the sequence xk converges to the saddle point. Furthermore, the Hessian of f at
(0, 0) is given by

∇2f(0, 0) =
[

0 1
1 0

]
,

which is indefinite, having eigenvalues of ±1.

This result is actually not surprising, since many gradient-based methods have
this same limitation. However, the results that follow provide conditions by which a
pseudo-second order necessary condition is satisfied – one that is weaker than the tra-
ditional second order necessary condition, but stronger than the first-order condition
that is all that can be guaranteed by most gradient-based methods.

We are now ready to present one of the main results of this paper. This will require
the use of the Clarke [12] calculus in a manner similar to that of [7], but applied to f ′

instead of f itself. We will denote by f◦◦(x; d1, d2), the Clarke generalized directional
derivative in the direction d2 of the directional derivative f ′(x; d1) of f at x in the
fixed direction d1. In other words, if g(x) = f ′(x; d1), then f◦◦(x; d1, d2) = g◦(x; d2).
We should note that this is consistent with the concepts and notation given in [13]
and [18]; however, we have endeavored to simplify the discussion for clarity. First, we
give a general lemma that is independent of the GPS algorithm. The theorem and
corollary that follow will be key to establishing a pseudo-second order result for GPS.

Lemma 5.2. Let f : Rn → R be continuously differentiable at x, and let f ′(·;±d)
be Lipschitz near x. Then

f◦◦(x; d, d) = lim sup
y→x,t↓0

f(y + td)− 2f(y) + f(y − td)
t2

.

Proof. In general, we can apply the definition of the generalized directional deriva-
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tive and the backward difference formula for directional derivatives to obtain

f◦◦(x; d, d) = g◦(x; d) = lim sup
y→x,t↓0

g(y + td)− g(y)
t

= lim sup
y→x,t↓0

f ′(y + td; d)− f ′(y; d)
t

= lim sup
y→x,t↓0

1
t

[
lim
s→0

f(y + td)− f(y + td− sd)
s

− lim
s→0

f(y)− f(y − sd)
s

]
= lim sup

y→x,t↓0

[
lim
s→0

f(y + td)− f(y + (t− s)d)− f(y) + f(y − sd)
ts

]
= lim sup

y→x,t↓0

[
f(y + td)− 2f(y) + f(y − td)

t2

]
,

where the last equation follows from letting s approach zero as t does (which is
allowable, since the limit as s→ 0 exists and is independent of how it is approached).

Theorem 5.3. Let x̂ be the limit of a refining subsequence, and let D(x̂) be
the set of refining directions for x̂. Under Assumptions A1–A3, if f is continuously
differentiable in a neighborhood of x̂, then for every direction d ∈ D(x̂) such that
±d ∈ D(x̂) and f ′(·;±d) is Lipschitz near x̂, f◦◦(x̂; d, d) ≥ 0.

Proof. From Lemma 5.2, it follows that

f◦◦(x̂; d, d) = lim sup
y→x̂,t↓0

f(y + td)− 2f(y) + f(y − td)
t2

≥ lim
k∈K

f(xk + ∆kd)− 2f(xk) + f(xk −∆kd)
∆2

k

≥ 0,

since ±d ∈ D(x̂) means that f(xk) ≤ f(xk ±∆kd) for all k ∈ K.
Corollary 5.4. Let x̂ be the limit of a refining subsequence, and let D(x̂) be the

set of refining directions for x̂. Under Assumptions A1–A3, if f is twice continuously
differentiable at x̂, then dT∇2f(x̂)d ≥ 0 for every direction d satisfying ±d ∈ D(x̂).

Proof. This follows directly from Theorem 5.3 and the fact that, when ∇2f(x̂)
exists, dT∇2f(x̂)d = f◦◦(x; d, d).

The following example illustrates how a function can satisfy the hypotheses of
Theorem 5.3, but not those of Corollary 5.4.

Example 5.5. Consider the strictly convex function f : R → R defined by

f(x) =
{

x2, if x ≥ 0,
−x3, if x < 0.

GPS will converge to the global minimizer at x = 0 from any starting point. The
derivative of f is given by

f ′(x) =
{

2x, if x ≥ 0,
−3x2, if x < 0.

Clearly, f ′ is (Lipschitz) continuous at all x ∈ R, satisfying the hypotheses of Theo-
rem 5.3. The second derivative of f is given by

f ′′(x) =
{

2, if x > 0,
−6x, if x < 0,
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and it is does not exist at x = 0. Thus, the hypotheses of Corollary 5.4 are violated.
The conclusion of Theorem 5.3 can be verified by examining the Clarke derivatives of
f ′ at x = 0:

f◦◦(0; d, d) = lim sup
y→0,t↓0

f(y + td)− f(y) + f(y − td)
t2

≥ lim sup
y→0,t↓0

(y + td)2 − (2y)2 + (y − td)2

t2

= lim sup
y→0,t↓0

y2 + 2ytd+ t2d2 − 2y2 + y2 − 2ytd+ t2d2

t2

= 2d2 ≥ 0.

5.1. Results for Unconstrained Problems. For unconstrained problems, re-
call that if f is twice continuously differentiable at a stationary point x∗, the second
order necessary condition for optimality is that ∇2f(x∗) is positive semi-definite; that
is, vT∇2f(x∗)v ≥ 0 for all v ∈ Rn. The following definition gives a pseudo-second
order necessary condition that is not as strong as the traditional one.

Definition 5.6. Suppose that x∗ is a stationary point of a function f : Rn → Rn

that is twice continuously differentiable at x∗. Then f is said to satisfy a pseudo-
second order necessary condition at x for an orthonormal basis V ⊂ Rn if

vT∇2f(x∗)v ≥ 0 ∀ v ∈ V. (5.1)

We note that (5.1) holds for −V as well; therefore, satisfying this condition means
that it holds for a set of “evenly distributed” vectors in Rn.

Now recall that a symmetric matrix is positive semidefinite if and only if it has
nonnegative real eigenvalues. The following theorem gives an analogous result for
matrices that are positive semidefinite with respect to only an orthonormal basis. We
note that this general linear algebra result is independent of the convergence results
presented in this paper.

Theorem 5.7. Let B ∈ Rn×n be symmetric, and let V be an orthonormal basis
for Rn. If B satisfies vTBv ≥ 0 for all v ∈ V , then the sum of its eigenvalues is
nonnegative. If B also satisfies vTBv > 0 for at least one v ∈ V , then this sum is
positive.

Proof. Since B is symmetric, its Schur decomposition can be expressed as B =
QΛQT , where Λ = diag(λ1, λ2, . . . , λn) and Q ∈ Rn×n is an orthogonal matrix whose
columns qi, i = 1, 2, . . . , n, are the orthonormal eigenvectors corresponding to the real
eigenvalues λi, i = 1, 2, . . . , n. Then for each vi ∈ V , i = 1, 2, . . . , n,

0 ≤ vT
i Bvi = vT

i QΛQT vi =
n∑

j=1

λj(QT vi)2j =
n∑

j=1

λj(qT
j vi)2, (5.2)

and, since {qj}n
j=1 and {vi}n

i=1 are both orthonormal bases for Rn, it follows that

0 ≤
n∑

i=1

vT
i Bvi =

n∑
i=1

n∑
j=1

λj(qT
j vi)2 =

n∑
j=1

λj

n∑
i=1

(vT
i qj)

2 =
n∑

j=1

λj‖qj‖22 =
n∑

j=1

λj . (5.3)
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To obtain the final result, observe that making just one of the inequalities in (5.2)
strict yields a similar strict inequality in (5.3), and the result is proved.

It is easy to see from this proof, that if V happens to be the set of eigenvectors Q of
B, then B is positive (semi-) definite, since in this case, (5.2) yields qT

j vi = qT
j qi = δij ,

which means that λi ≥ (>)0.
We now establish pseudo-second order results for GPS by the following two the-

orems. The first theorem requires convergence in a finite number of steps, while the
second necessitates the use of a more specific set of positive spanning directions.

Theorem 5.8. Let V be an orthonormal basis in Rn. Let x̂ be the limit of
a refining subsequence, and let D(x̂) be the set of refining directions for x̂. Under
Assumption A1, if f is twice continuously differentiable at x̂, Dk ⊇ V infinitely often
in the subsequence, and xk = x̂ for all sufficiently large k, then f satisfies a pseudo-
second order necessary condition for V at x̂.

Proof. For all k ∈ K and d ∈ D(x̂), we have f(xk + ∆kd) ≥ f(xk). Furthermore,
for all sufficiently large k ∈ K, since xk = x̂, a simple substitution yields f(x̂+∆kd) ≥
f(x̂) for all d ∈ D(x̂). For each d ∈ D(x̂), Taylor’s Theorem yields

f(x̂+ ∆kd) = f(x̂) + ∆kd
T∇f(x̂) +

1
2
∆2

kd
T∇2f(x̂)d+O(∆3

k).

Since Corollary 3.6 ensures that ∇f(x̂) = 0, we have

0 ≤ f(x̂+ ∆kd)− f(x̂) =
1
2
∆2

kd
T∇2f(x̂)d+O(∆3

k),

or dT∇2f(x̂)d ≥ O(∆k) for all d ∈ D(x̂) and for all sufficiently large k ∈ K. The
result is obtained by taking limits of both sides (in K) and noting that D(x̂) must
contain V .

Theorem 5.9. Let V be an orthonormal basis in Rn. Let x̂ be the limit of
a refining subsequence, and let D(x̂) be the set of refining directions for x̂. Under
Assumption A1, if f is twice continuously differentiable at x̂ and Dk ⊇ V ∪ −V
infinitely often in the subsequence, then f satisfies a pseudo-second order necessary
condition for V at x̂. Furthermore, the sum of the eigenvalues of ∇2f(x̂) must be
nonnegative.

Proof. Since D(x̂) ⊂ D is finite, it must contain V ∪ −V , and the result follows
directly from Corollary 5.4 and Definition 5.6. The final result follows directly from
the symmetry of ∇2f(x̂) and Theorem 5.7.

The significance of Theorem 5.9 is that, if f is sufficiently smooth, then the choice
of orthonormal mesh directions at each iteration will ensure that the pseudo-second
order necessary condition is satisfied, and that the sum of the eigenvalues of ∇2f(x̂)
will be nonnegative. Thus, under the assumptions, GPS cannot converge to any saddle
point whose Hessian has eigenvalues that sum to less than zero.

These saddle points (to which GPS cannot converge) are those which have suffi-
ciently large regions (cones) of negative curvature. To see this, consider the contra-
positive of Theorem 5.7 applied to the Hessian at the limit point; namely, if the sum
of the eigenvalues of ∇2f(x̂) is negative, then for any orthonormal basis V ∈ Rn, at
least one vector v ∈ V must lie in a cone of negative curvature (i.e., vT∇2f(x̂)v < 0).
Since the angle between any two of these orthogonal directions is 90 degrees, there
must be a cone of negative curvature with an angle greater than 90 degrees.

The following example shows that, even for orthonormal mesh directions, it is
still possible to converge to a saddle point – even when not starting there. It also
illustrates our assertion about cones of negative curvature.
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Example 5.10. Let f : R2 → R be the twice continuously differentiable function
defined by

f(x, y) = 99x2 − 20xy + y2 = (9x− y)(11x− y). (5.4)

Choose (x0, y0) = (1, 1) as the initial point, and set D = {e1, e2,−e1,−e2}, where
e1 and e2 are the standard coordinate directions. Now observe that, at the saddle
point (0, 0), directions of negative curvature lie only in between the lines y = 9x and
y = 11x. Thus, to avoid the saddle point, the GPS sequence would have to include
a point inside the narrow cone formed by these two lines, when sufficiently close to
the origin. If the search step is empty, and the polling directions in D are chosen
consecutively in the poll step (i.e., we poll in the order e1, e2,−e1,−e2), then the
iteration sequence arrives exactly at the origin after 10 iterations and remains there
because none of the directions in D point inside of a cone of negative curvature.
Figure 5.1 shows the cones of negative curvature for f near the saddle point. Note
that these cones, depicted in the shaded areas, are very narrow compared to those of
positive curvature. Thus, for the search directions in D, it will be difficult to yield a
trial point inside one of these cones.

On the other hand, if our objective function were −f , then the cones of negative
curvature would be depicted by the non-shaded areas. In this case, Theorem 5.7 en-
sures that GPS cannot converge to the saddle point, since any set of 2n orthonormal
directions would generate a trial point inside one of these cones, and thus a lower
function value than that of the saddle point.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Cones of Negative Curvature

�

�

Fig. 5.1. For f(x, y) = (9x − y)(11x − y), the cones of negative curvature at the saddle point
(0,0) are shown in the shaded area between the lines y = 9x and y = 11x.

5.2. Results for Linearly Constrained Problems. We now treat the linear
constrained problem given in (1.1). At this point, we note that there are two equiv-
alent formulations for the classical Karush-Kuhn-Tucker (KKT) first-order necessary
conditions for optimality, one of which is imbedded in Theorem 3.5. It states that
a point x∗ satisfies the first-order necessary conditions if ∇f(x∗)Tw ≥ 0 for all di-
rections w in the tangent cone TX(x∗) at x∗, and −∇f(x∗) lies in the normal cone
NX(x∗) at x∗. However, since we do not have such a straightforward description of
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a second order necessary condition in this form, we now give a more traditional form
of the KKT necessary conditions, from which we will be able to establish a sensible
pseudo-second order condition. The following lemma, given without proof, is taken
from a well-known textbook [26].

Lemma 5.11. If x∗ is a local solution of (1.1), then for some vector λ of Lagrange
multipliers,

1. ∇f(x∗) = ATλ, or equivalently, WT∇f(x∗) = 0,
2. λ ≥ 0,
3. λT (Ax∗ − b) = 0,
4. WT∇2f(x∗)W is positive semi-definite,

where the columns of W form a basis for the null-space of the active constraints at
x∗.

The first three conditions of Lemma 5.11 are generally referred to as first-order
necessary conditions, while the last is the second order necessary condition. Con-
vergence of a subsequence of GPS iterates to a point satisfying first-order conditions
has been proved previously [7, 22] and is summarized in Theorem 3.5. Based on the
second order condition, we now provide a pseudo-second order necessary condition
for linearly constrained problems that is analogous to that given in Definition 5.6 for
unconstrained problems.

Definition 5.12. For the optimization problem given in (1.1), let W be an or-
thonormal basis for the null space of the binding constraints at x∗, where x∗ satisfies
the KKT first-order necessary optimality conditions, and f is twice continuously dif-
ferentiable at x∗. Then f is said to satisfy a pseudo-second order necessary condition
for W at x∗ if

wT∇2f(x∗)w ≥ 0 ∀ w ∈W. (5.5)

The following theorem shows that the condition given in (5.5) has an equivalent
reduced Hessian formulation similar to Definition 5.6. It is formulated to be a general
linear algebra result, independent of the GPS algorithm.

Theorem 5.13. Let B ∈ Rn×n be symmetric, and let W ∈ Rn×p be a matrix
with orthonormal columns {wi}p

i=1, where p ≤ n. Then the following two statements
are equivalent.

1. wT
i Bwi ≥ 0, i = 1, 2, . . . , p,

2. There exists a matrix Y whose columns {yi}p
i=1 form an orthonormal basis

for Rp such that yT
j W

TBWyj ≥ 0, j = 1, 2, . . . p.
Proof. Suppose wT

i Bwi ≥ 0, i = 1, 2, . . . , p. Then eT
i Bei ≥ 0, i = 1, 2, . . . , p, and

the result holds since {ei}p
i=1 are orthonormal.

Conversely, suppose there exists Y ∈ Rp×p such that yT
j W

TBWyj ≥ 0, j =
1, 2, . . . p. Let Z = WY with columns {zi}p

i=1. Then for i = 1, 2, . . . , p, we have
zT
i Bzi = yT

i W
TBWyi ≥ 0. Furthermore, the columns of Z are orthonormal, since

zT
i zj = (Wyi)T (Wyj) = yT

i W
TWyj = yT

i yj = δij (the last step by the orthogonality
of Y ).

Assumptions A2–A3 ensure that the GPS algorithm chooses directions that con-
form to X [7, 21, 22]. This means that the finite set T of all tangent cone generators
for all points x ∈ X must be a subset of D, and that if an iterate xk is within ε > 0
of a constraint boundary, then certain directions in T must be included in Dk. An
algorithm that identifies these directions Tk ⊆ T , in the non-degenerate case, is given
in [22], where it is noted that Tk is chosen so as to contain a (positive) basis for
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the null-space of the ε-active constraints at xk. Thus, the set of refining directions
D(x̂) will always contain tangent cone generators at x̂, a subset of which forms a
basis for null-space of the active constraints at x̂. We will denote this null-space by
N (Â), where Â is the matrix obtained by deleting the rows of A corresponding to the
non-active constraints at x̂.

However, in order to exploit the theory presented here we require the following
additional assumption so that D(x̂) will always contain an orthonormal basis for
N (Â).

A4: The algorithm that computes the tangent cone generators at each iteration
includes an orthonormal basis for the null-space of the ε-active constraints at each
iterate.

Furthermore, since N (Â) contains the negative of any vector in the space, we can
prove convergence to a point satisfying a pseudo-second order necessary condition by
including Tk ∪ −Tk in each set of directions Dk.

The next theorem establishes convergence of a subsequence of GPS iterates to a
point satisfying a pseudo-second order necessary condition, similar to that of Theo-
rem 5.8 under the fairly strong condition that convergence occurs in a finite number
of steps.

Theorem 5.14. Let V be an orthonormal basis for Rn. Let x̂ be the limit of
a refining subsequence, and let D(x̂) be the set of refining directions for x̂. Under
Assumptions A1–A4, if f is twice continuously differentiable at x̂, and for all suffi-
ciently large k, Dk ⊂ V and xk = x̂, then f satisfies a pseudo-second order necessary
condition for V at x̂.

Proof. For all k ∈ K and d ∈ D(x̂), we have f(xk + ∆kd) ≥ f(xk). Furthermore,
for all sufficiently large k ∈ K, since xk = x̂, a simple substitution yields f(x̂+∆kd) ≥
f(x̂) for all d ∈ D(x̂). For each d ∈ D(x̂), Taylor’s Theorem yields

f(x̂+ ∆kd) = f(x̂) + ∆kd
T∇f(x̂) +

1
2
∆2

kd
T∇2f(x̂)d+O(∆3

k).

For d ∈ N (Â), Lemma 5.11 ensures that dT∇f(x̂) = 0, and thus

0 ≤ f(x̂+ ∆kd)− f(x̂) =
1
2
∆2

kd
T∇2f(x̂)d+O(∆3

k),

or dT∇2f(x̂)d ≥ O(∆k) for all d ∈ D(x̂) ∩ N (Â) and for all sufficiently large k ∈ K.
The result is obtained by taking limits of both sides (in K), since D(x̂) must contain
an orthonormal basis for N (Â).

In the theorem that follows, we show that, given sufficient smoothness of f , if mesh
directions are chosen in a fairly standard way, a subsequence of GPS iterates converges
to a point satisfying a pseudo-second order necessary condition. The theorem is similar
to Theorem 5.9. Once again, the corollary to this theorem identifies an entire class of
saddle points to which GPS cannot converge.

Theorem 5.15. Let V be an orthonormal basis for Rn. Let x̂ be the limit of
a refining subsequence, and let D(x̂) be the set of refining directions for x̂. Under
Assumptions A1–A4, if f is twice continuously differentiable at x̂ and Dk ⊇ V ∪
−V ∪ Tk ∪ −Tk infinitely often in the subsequence, then f satisfies a pseudo-second
order necessary condition for V at x̂.

Proof. From the discussion following Theorem 5.13, D(x̂) contains an orthonormal
basis W for N (Â). Since D is finite, for infinitely many k, we have −W ⊆ −Tk ⊂ Dk,
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which means that −W ⊆ D(x̂). Thus, D(x̂) ⊇W ∪−W , where W is an orthonormal
basis for N (Â), and the result follows from Corollary 5.4 and Definition 5.12.

Corollary 5.16. If hypotheses of Theorem 5.15 hold, then the sum of the
eigenvalues of the reduced Hessian WT∇2f(x̂)W is nonnegative, where the columns
of W form a basis for the null space of the active constraints at x̂.

Proof. Theorem 5.15 ensures that the pseudo-second order condition holds; i.e.,
wT∇2f(x̂)w ≥ 0 for all w ∈ W . Then for i = 1, 2, . . . , |W |, eT

i W
T∇2f(x̂)Wei ≥ 0,

where ei denotes the ith coordinate vector in R|W |. Since WT∇2f(x̂)W is symmet-
ric and {ei}|W |

i=1 forms an orthonormal basis for R|W |, the result follows from Theo-
rem 5.7.

6. Concluding Remarks. Clearly, the class of GPS algorithms can never be
guaranteed to converge to a point satisfying classical second order necessary conditions
for optimality. However, we have been able to show the following important results,
which are surprisingly stronger than what has been proved for many gradient-based
(and some Newton-based) methods:

• Under mild assumptions, GPS can only converge to a local maximizer if it
does so in a finite number of steps, and if all the directions used infinitely
often are directions of constant function value at the maximizer (Lemma 4.2,
Theorem 4.3).

• Under mild assumptions, GPS cannot converge to or stall at a strict local
maximizer (Corollary 4.4).

• If f is sufficiently smooth and mesh directions contain an orthonormal basis
and its negatives, then a subsequence of GPS iterates converges to a point
satisfying a pseudo-second order necessary condition for optimality (Theo-
rems 5.9 and 5.15).

• If f is sufficiently smooth and mesh directions contain an orthonormal basis
and its negatives, then GPS cannot converge to a saddle point at which
the sum of the eigenvalues of the Hessian (or reduced Hessian) are negative
(Theorem 5.9 and Corollary 5.16).

Thus an important characteristic of GPS is that, given reasonable assumptions, the
likelihood of converging to a point that does not satisfy second order necessary con-
ditions is small.
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